
TECHNICAL NOTE 

Adiabatic compressible f low in parallel ducts: 
an approximate but rapid method of solution 
G. J. Parker 
Department of Mechanical  Engineering, Universi ty of Canterbury, Christchurch, New Zealand 

By examining the nature of exact solutions for adiabatic one-dimensional f low of perfect 
gases in ducts, we have developed an approximate method of solution which is direct and, 
hence, much faster while still being acceptably accurate. 
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I n t r o d u c t i o n  

The analysis of one-dimensional compressible (Fanno-type) 
flow is well documented (e.g., Ref. 1). A key equation, deriving 
from the energy and momentum equations, is 

4 f /__ l [  1 1 ] _ 7 + l l n [ ( 7 - 1 ) M ~ + 2  ] 
d ~, Mf  M~/  2~ L ( ~ , - 1 ) M ~  (1) 

where M 1 and M 2 are the Mach numbers at inlet to and outlet 
from the parallel duct. This equation has to be solved in 
conjunction with equations for property ratios (e.g., Pl/P2), 
expressed in terms of Mt and M2, and the continuity equation 
to give the mass flow rate w (=p~Alul). 

A common problem is to determine the mass flow rate 
through a given duct for a known pressure difference across it. 
The solution requires an iterative process, in effect determining 
a pair of values for Mt and M 2 which satisfy all the equations. 
The usual method adopted is to plot or tabulate from Equation 
1 values of 4fUd for various M~ with M 2 = 1 (i.e., choked flow 
with sonic conditions at the downstream end). This gives the 
maximum value of 4fl/d for that value of M 1. 

If the pressure ratio between 1 and 2 is the given parameter, 
the procedure is to select pairs of values of M~ and M 2 so that 

4f/] m,,, -- ,,,,,x (2) 
M=M1 M=M2 

and 

p2 LM2JL(7-  1)M22~_1 (3) 

It is also not uncommon for the flow into the parallel duct to 
be through a convergent nozzle at inlet, so the above pressure 
ratio term can be expanded to incorporate isentropic flow 
through the nozzle; thus 

-2 l ' " ' - "  
Po L M 2 J L ( ? - I ) M ] + 2 J  LO,-1)Mf+2J (4) 

where Po is the stagnation pressure and P2/Po would be the 
given pressure ratio. 
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The iterative solution is not difficult and can be readily 
programmed for computer solution. However, if this solution 
is just part of a much larger program (e.g., compressible flow 
through the complex passages in pop safety valves2), then this 
step may be an iterative step within one or more other iterative 
steps, and a faster more direct procedure becomes worth 
seeking, to save computation time. 

E x a c t  s o l u t i o n  

Results from computations described above are conveniently 
shown in dimensionless form, plotting a dimensionless mass 
flow rate W (=w/A(poPo) 1/2) against the pressure ratio r 
(=Pz/Po) for various values of 4fl/d. A typical result for 7 = 1.4 
is shown in Figure 1. 

O b s e r v a t i o n s  f r o m  e x a c t  s o l u t i o n s  

Several interesting features can be noted from Figure 1, and 
from similar diagrams for other values of ~,. First, the locus of 
the maximum values of W at choked conditions is linear with 

1.o  

o .9  

0 .8  

¢ .7  

w 0 .6  

w 
- ~  r . 5  

o . 3  

0 .2  

o ,1  

I i = i i , I i 

'6' =1 .4  

4fl [ocu~ of limit of 

c hok~d flow 

0 / 

/ / /  

3 / 11 

/ /  

" 10 /// 

I I I i I I I I I 

o.1  o .2  o .  5 0 . 4  o .5  0 .6  o .7  0 .8  o .9  1 .0  

r : P'/Po 

Figure 1 Results from exact analysis for parallel duct with inlet 
nozzle, showing dimensionless flow rate against overall pressure 
ratio for various values of 4fl/d 
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the choked pressure ratio, as shown by the dotted line in the 
figure. (This can also be deduced analytically.) Second, if the 
unchoked regions of the curves are plotted on a relative basis 
as Wr=~ against rr=~, then the curves collapse to follow closely a 
single curve, as shown in Figure 2. Furthermore,  the curve 
approximates very closely to a quadrant  of a circle with the 
equation 

2 - -  2 Wr~ 1 -  1 - r r e  I (5) 

Third, the effect of variations in 7 can be reduced by including 
y in 4fl/d. The curves represented in Figure 2 have already been 
plotted using the parameter y4fl/d. Last, a relatively simple 
functional relation can be used to express the choked dimension- 
less mass flow rate in terms of 74fl/d. If expressed as a ratio to 
the nozzle choked flow (i.e., for y4fl/d = 0), then the following 
expression represents a good fit to the exact solutions: 

W ~ , -  l + a  (6) 

where a, b, and c are constants. 

Procedure  fo r  a p p r o x i m a t e  so lu t ion  

To calculate the mass flow rate through a given duct (plus inlet 
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Figure 2 Plot of relative dimensionless mass flow against relative 
pressure ratio, showing that curves for all values of yM1/d fit closely 
to a quadrant of a circle 

nozzle) for a known overall pressure ratio, we do the following: 

(1) Compute the value of 94fl/d. f is strictly not a constant, 
being dependent on the ReynoldS number  and roughness 
ratio, but  f =  0.005 is a value which serves most purposes 
with acceptable accuracy. 

(2) From standard isentropic relations, determine the choked 
mass flow rate and choked pressure ratio for the nozzle 
alone. 

(7) 
r 2 l ' / ( ' - "  

These values have to be determined only once, at the 
beginning of the calculations, since they are functions of y 
only. 

(3) For  the given value of 74fl/d, determine the dimensionless 
mass flow ratio Wca/We, using the functional relation 
Equation 6. 

(4) Because of the linear relationship, the ratio of pressure 
ratios rea/r¢, equals the mass flow ratio obtained in step (3). 

(5) Then obtain the pressure ratio r,d. 
(6) Obtain the relative pressure ratio for the required pressure 

ratio r: rr© 1 = (r - rcd)/(1 - red  ). 
(7) Then  obtain the relative flow rate from Wre I (=  W/Wed ) = 

| ~ 2  ~ 1 / 2  

• - -  ~ r e l !  

(8) The dimensionless mass flow rate is then, from steps (2), 
(3), and (7), W= Wro~(WdWc,)We,,. 

C o m p a r i s o n  w i t h  exact  so lu t ions  

This procedure has been compared with the solutions from 
exact analyses for a range of), from 1.1 to 1.7, a range of 74fl/d 
from 0 to 10,000, and a range of pressure ratios from 1.0 to 
the appropriate choked pressure ratio (rr=~ = 0). Values for the 
constants used in Equation 6 were a=0.4386,  b=0.7966, 
c = - 0.6211. The errors are plotted in Figures 3(a), (b), and (c). 

It can be seen that, for choked conditions (r,=~ = 0) the error 
is small (less than _+ 1%), except for high values of 74fl/d (which 
would normally correspond to very long ducts). For  pressure 
ratios in the midrange (r,=t= 0.5) the error ranges from - 3 %  
at y4fl/d=0.3 to + 3 %  at y4fl/d= 10,000. When the pressure 
ratio is close to unity (i.e., very small flow rates), the error is 
still within _ 3%, except for the values of y4fl/d below about  

N o t a t i o n  

a Constant  in Equation 6 
A Duct cross-sectional area, m 2 
b Constant  in Equation 6 
c Constant  in Equation 6 
d Duct diameter, m 
f Friction factor (defined from head loss = 4flu2/2gd) 
l Duct length, m 
M Mach number  
p Pressure, Pa 
r Pressure ratio P2/Po 
re. Pressure ratio for choked conditions at nozzle 

discharge 
red Pressure ratio for choked conditions at duct discharge 

r,=~ Relative pressure ra t io=  (r--red)l(1--rcd ) 
u Gas velocity, m/s 
w Mass rate of flow, kg/s 
W Dimensionless mass rate of flow =w/A(poPo) l/z 
We, Dimensionless choked flow rate for nozzle alone 
Wed Dimensionless choked flow rate for duct 
Wrel Relative dimensionless flow rate = W/Wcd 
7 Isentropic expansion index (p/p~ = const.) = ratio of 

specific heats for a perfect gas 
p Density, kg/m 3 

Subscripts 
0 Stagnation condition 
1 Duct inlet 
2 Duct outlet 
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6.0, when the error can reach up to - 6%. The effect of variation 
in the value of 7 is also seen to be small, except for the'low 
values of y4fl/d at pressure ratios near unity. 

C o n c l u s i o n  

The error in flow rate incurred by using the approximate 
method would normally be acceptable, considering the un- 
certainty associated with the value of friction factor and the 
assumption of one-dimensional flow. For the type of problem 
for which it was developed, the fact that it is 100 times faster 
in the computer than the iterative method makes it a most 
acceptable method. 
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